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the shape of the unit cell. While the early molecular dynam-
ics methods kept the unit cell shape of the crystal fixedA quasi-Newton method is used to simultaneously relax the inter-

nal coordinates and lattice parameters of crystals under pressure. and relaxed only the internal degrees of freedom, the more
The symmetry of the crystal structure is preserved during the relax- recent algorithms allow for a variation of both. The first
ation. From the inverse of the Hessian matrix, elastic properties, molecular dynamics approach with a variable unit cell
and some optical phonon frequencies at the Brillouin zone center

shape was proposed by Parrinello and Rahman (PR) [7],can be estimated. The efficiency of the method is demonstrated for
where a fictitious Lagrangian governed the time evolutionsilicon test systems. Q 1997 Academic Press

of internal coordinates and the cell shape. However, the
crystal symmetry is not preserved along the trajectories

1. INTRODUCTION derived from their Lagrangian; in other words the symme-
try of the crystal can be reduced during the relaxation

Ab-initio computations of the total energy within the process. This is undesirable when structural phase transi-
framework of density functional theory (DFT) and the tions are examined, where one would like to impose the
local density approximation (LDA) [1] have been success- crystal symmetry. Picking the strain « as time-dependent
ful in predicting the structural properties of materials [3]. variable instead of the lattice vectors, Wentzcovitch [8]
At zero temperature and pressure, the structural parame- modified the PR Lagrangian to generate symmetry-pre-
ters are determined by moving the constituting atoms to serving trajectories.
positions where the energy E is minimal. This can be done We present here a relaxation scheme which preserves
much more efficiently if the forces on the atoms can be the symmetry and is not based on a molecular dynamics
computed [2]. If a pressure p is applied to the material, it approach, but which uses a powerful quasi-Newton optimi-
is the enthalpy H 5 E 1 pV which has to be minimized zation scheme to search for the relaxed configuration.
with respect to all structural parameters, including the vol- While this method has been applied to treat forces on
ume V. atoms before [9], we report for the first time how to simulta-

Our focus will be on crystalline materials at zero temper- neously relax the lattice parameters. The quasi-Newton
ature, where the unit cell shape and the coordinates of the method accumulates information about the enthalpy sur-
atoms inside the unit cell are the parameters to be adjusted face in the inverse of the Hessian matrix H, which renders
such that the enthalpy acquires a minimum. In this article, it superior to the molecular dynamics algorithms proposed
we report a symmetry-preserving algorithm to relax the recently [6]. After the relaxation has been completed, H
unit cell shape and the atomic coordinates simultaneously can be exploited to estimate elastic properties and the
by using the computed forces [2] and the stress [4]. This optical phonon energies at the center of the Brillouin zone.
is a frequent task when structural phase transitions are Using the H obtained from similar calculations further
studied, where one is interested in the properties of a phase improves the performance. We demonstrate the efficiency
with a given symmetry as a function of pressure. Although of our scheme for silicon in the diamond and the R8
we demonstrate the efficiency of our method within the phases [10].
framework of DFT in LDA, it is of rather general use and
can be applied to relax crystal structures whenever forces 2. THE QUASI-NEWTON METHOD FOR CRYSTAL
and stress are available. STRUCTURE RELAXATION

Quantum molecular dynamics schemes of different fla-
vors are commonly used to tackle this problem. In contrast We start this section by establishing the notation and

defining the configuration space coordinates. The crystalto the Car–Parrinello method [5], we follow the more tradi-
tional approach [6] and relax the electronic degrees of structure is determined by the matrix of lattice vectors

h 5 ha, b, cj and the coordinates si , i 5 1, ... N, relative tofreedom completely before moving the atoms and changing
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h of the N atoms in the unit cell, which has a volume of Shanno (BFGS) quasi-Newton scheme [12] for its stability
and efficiency [13]. A recent review of this method is givenV 5 det(h). The energy E per unit cell is a function of h

and the si’s. in Ref. [14]. Like all quasi-Newton schemes, BFGS accu-
mulates information about the Hessian matrix and, there-For convenience, we choose the finite strain tensor « as

a free variable, instead of the lattice vectors h. It has nine fore, about the shape of the enthalpy surface around the
minimum. As we will show in Section 3, in many cases thiscomponents and stretches a reference configuration h0 into

h 5 (1 1 «)h0 . Molecular dynamics schemes [8, 11] often allows us to estimate the frequencies of zone-center optical
phonons, elastic stiffness coefficients, and the bulkconstrain « to be symmetric in order to avoid rotations of

the unit cell. Since there is no notion of angular momentum modulus.
Sufficiently close to a minimum Xmin , the change in en-in our scheme, we allow for an asymmetric « to simplify

the extraction of elastic properties and phonon modes in thalpy dH can be approximated by
Section 3.

Relaxing a crystal structure with N atoms in the unit dH 5 As(X 2 Xmin) ? A(X 2 Xmin). (6)
cell under the applied pressure p, thus, is an optimization
problem for the enthalpy per unit cell H 5 E 1 pV in a In the vicinity of Xmin , complete knowledge of the Hessian
(9 1 3N)-dimensional space: matrix A would allow us to find the exact (local) minimum

Xmin from the force F with one relaxation step. However,
H 5 H(«, s1 , ..., sN ). (1) A is unknown. The key idea of the quasi-Newton schemes

is to start with an initial guess for A, and improve on A
Let us denote a point in configuration space by the col- successively as the relaxation proceeds. Actually, it is not

umn vector X. We define the first nine components of X A, but the inverse H 5 A21 which is being developed. In
to be the strain components «, which are converted into a relaxation step i 1 1, the previous position Xi is updated
nine-element column vector by X3(i21)1j 5 «i j ; i, j 5 1, 2, according to
3. Then follow the coordinates of the atoms in the unit
cell, s1 , s2 , ..., sN . We will call the negative of the derivative Xi11 5 Xi 1 lDXi , (7)
of the enthalpy H with respect to X,

DXi 5 HiFi , (8)

where Fi is F evaluated at Xi and l is the step length whichF 5 2
H
X U

p
, (2)

is determined by an approximate line minimization along
the step direction DXi . The BFGS scheme takes as input

the ‘‘force vector.’’ The strain components of F are the an initial guess H0 for H and updates it according to
derivatives of H 5 E 1 pV with respect to «,

Hi 5 Hi21 2
(Xi 2 Xi21) ^ (Xi 2 Xi21)
(Xi 2 Xi21) ? (Fi 2 Fi21)f («) 5 2(s 1 pV)(1 1 «T)21, (3)

where s is the stress at a given configuration X: 2
(Hi21(Fi 2 Fi21)) ^ (Hi21(Fi 2 Fi21))

(Fi 2 Fi21) ? Hi21(Fi 2 Fi21)

1 [(Fi 2 Fi21) ? Hi21(Fi 2 Fi21)]U ^ U, (9)
s 5 SE((1 1 «9)h)

«9
D

«950
. (4)

U 5
(Xi 2 Xi21)

(Xi 2 Xi21) ? (Fi 2 Fi21)Notice that the right-hand side of (3) need not be symmet-
ric and that we do not symmetrize it. Thus, « can become

2
Hi21(Fi 2 Fi21)

(Fi 2 Fi21) ? Hi21(Fi 2 Fi21)
.

asymmetric during the course of the relaxation.
The other 3N components of F are obtained by multi-

plying the forces on the atoms f1 ... fN in lattice coordinates If the enthalpy were perfectly quadratic in X 2 Xmin , Hi

with the metric tensor g 5 hTh, such that the complete F would converge to A21 after the number of relaxation steps
can be written as has reached the number of degrees of freedom in the sys-

tem [15]. More precisely, Hi and A21 would not be identical,
F 5 ( f («), gf1 , ..., gfN)T. (5) but would have the same projection into the sampled sub-

space. The number of degrees of freedom equals the num-
ber of symmetry-compliant directions in configurationThere exist a large number of algorithms for finding

minima of multivariable functions if the first derivative is space, not counting rotations of the unit cell and an overall
translation of the atoms. This amounts to the number ofavailable. We favor the Broyden–Fletcher–Goldfarb–
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symmetric optical phonon modes at the Brillouin zone example the same structure, but at a different pressure—
the fully builtup H of that calculation can be used withcenter G plus the number of lattice parameters.

In molecular dynamics schemes, one has to choose suit- great benefit, as we will see in Section 4.3.
The line minimization required to find l in Eq. (7) cannotable fictitious masses and proper time steps to get fast

convergence. The masses are normally determined by opti- be performed exactly, and one has to refrain to trial steps to
find the minimum of H along the proposed search directionmizing the dynamical coupling to the internal degrees of

freedom during test runs [8]. Analogously, in the present DXi . It is often advantageous not to do any line minimiza-
tion and to set l 5 1, because the increased number ofquasi-Newton method, H0 has to be initialized properly to

assure a reasonable step size during the first few relaxation relaxation steps required will be more than outweighed by
the savings in force/stress evaluations for the line minimi-steps. It is important that H0 does not break the symmetry

when it is applied to a force vector F. Evidently, the depen- zation. On the other hand, during the first few relaxation
steps, the force F might be large due to a poor initializationdence of the enthalpy on « is governed by the elastic stiff-

ness coefficients Bijkl [16], or in a coarser sense, by the of H, and an approximate line minimization is necessary
to stabilize the algorithm. We find the following procedurebulk modulus. Similarly, the optical phonon frequencies

at G should determine the increase of the enthalpy upon a good compromise for several different systems. After a
trial step with l 5 1, a linear fit to the forces F at l 5 0displacement of the internal coordinates from the equilib-

rium positions. and l 5 1 is performed. From the fit, we obtain l2 for
which H should be minimal along DXi . If l2 is smallerWith this in mind, we suggest setting the strain part of

H0 to the (9 3 9) identity matrix multiplied by (3VB0)21, than 0.4 or larger than 1.6, we move by l2DXi . Otherwise,
we consider l 5 1 as sufficiently close to the minimumB0 being an estimate for the bulk modulus. Thus, in the

first step the strain components of the search direction DX0 and move by DXi , thereby saving a force/stress computa-
tion. Once H is built up, the trial step with l 5 1 will bewill be parallel to f («). For the internal coordinates, we

propose to initialize H0 as block diagonal with (3 3 3) close enough to the minimum to omit the additional step
with l 5 l2 .matrices of the form g21

0 M̄21ḡ22
O , where g0 5 hT

0 h0 is the
metric tensor of the initial configuration, M̄ is the average In general there are several local minima in configuration

space, and the algorithm can get trapped in one of those. Inmass of the atoms, and ḡO is a guess for the average of
the optical phonon frequencies at the center of the Bril- that sense, we present a method to relax forces and stress,

not to find the structure for which the enthalpy is globallylouin zone:
minimal. The location of the global enthalpy minimum still
requires the intuition of a good starting point. The very same

(3VB0)21 0 fact allows us to apply negative pressures, where the system
could lower its enthalpyH5 E 2 upuV arbitrarilyby increas-5
ing the cell volume V. This indeed happens for strong nega-

(3VB0)21 tive pressures if the initial crystal structure is weakly bound,H0 5 .1 2 e.g., by Van der Waals forces. For moderate negative pres-g21
0 M̄21ḡ22

O
sures and crystals with ionic, metallic, or covalent bonds this

5 is not a problem though.

0 g21
0 M̄21ḡ22

O

(10) 3. OPTICAL PHONON MODES AND ELASTIC
PROPERTIES

The motivation for Eq. (10) will become more transparent
when we discuss the extraction of elastic properties and Given a perfectly quadratic form of the enthalpy around

the minimum and assuming an exact line minimization, itoptical phonon modes in Section 3. We show in the Appen-
dix that this initialization of H preserves the symmetry of can be shown [15] that H will converge to the inverse of

the matrix A, and one would think that, conversely, athe crystal during the relaxation. Note that (10) has only
two ‘‘free’’ input parameters ḡO and B0 , which makes it large amount of information about phonon frequencies

and elastic properties can be extracted by analyzing H.simple to use. There are certainly more sophisticated ways
of choosing H0 , for instance with different values on the However, the assumption of a quadratic form is only valid

around the minimum, and we already mentioned that andiagonal for the strain part, corresponding to strains for
which the elastic stiffness coefficients are expected to differ accurate line minimization is expensive to do.

Also, the relaxation process might be converged longsubstantially. However, this will only matter during the
first few relaxation steps for a new structure. In the case before the H-matrix is fully built up. This is especially true

for a large number of degrees of freedom and if the initialthat a similar relaxation has been done previously—for
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configuration is close to the relaxed one. Even though it symmetry constraints have been sampled, m is the number
of degrees of freedom. In this case, we can choose theis often possible to extract information from an incomplete

H, for simplicity we will assume that all degrees of freedom fist m« basis vectors in Y to have components in the six-
dimensional symmetric strain space only, and the otherhave been sampled.

Moreover, depending on the crystal structure, only a ms basis vectors to be pure displacements of the internal
coordinates. Thus we have a symmetric strain tensor «(l)subspace of the full configuration space might be sampled

during the relaxation process, since the crystal symmetry for each of the strain-only basis vectors indexed by l 5 1,
..., m« , and a set of atomic displacement vectors s(k)

i ,is preserved. Thus, we can only get the elastic properties
for strains which do not break the symmetry, and the sym- i 5 1, ..., N, for each of the other basis vectors k 5 1, ...,

ms . Such a decomposition is always possible, because themetry-preserving optical phonon modes at G. On the other
hand, since isotropic scaling leaves the symmetry un- lattice degrees of freedom and those of the internal coordi-

nates are independent of each other.changed, the cell volume V is always a free parameter and
the bulk modulus is accessible irrespective of the crystal To determine the accessible elastic stiffness coefficients

and phonon modes, it is convenient to write the distortionstructure.
The extraction of information starts with manipulations d« and the atomic displacement vectors ui , i 5 1, ..., N (in

Cartesian coordinates) as linear combinations of the basisof the H-matrix (cf. Eq. (9)) obtained from the last relax-
ation step. We first correct for the finite strain, which enters vectors spanning the sampled subspace:
the force f («) in Eq. (3) in the form of a factor of (1 1
«T)21. After defining the (9 1 3N) 3 (9 1 3N) matrix D as

ui 5 Oms

j51
j jM21/2

i hs( j)
i , (13)

d« 5 Om«

j51
z j«

( j). (14)

D 51
(1 1 «) 0

(1 1 «)

(1 1 «)

1
.
.
.

0 1

2 , (11) Equations (13) and (14) define the reduced coordinates j
and z. The mass Mi of the atom i in (13) simplifies the
notation when the phonon modes are calculated later. For
a compact matrix notation, we further introduce the (6 1
3N) 3 (6 1 3N) matrix

we arrive at the corrected (9 1 3N) 3 (9 1 3N) matrix

H9 5 D21T
HD21. (12)

In Eq. (12), H is transformed from the coordinate system
of the initial configuration h0 to the coordinate system of

e 51
I6 0

M1

M1

M1

M2

.
.
.

0 MN

2, (15)the relaxed configuration h, such that H9 describes the
changes in enthalpy around the relaxed configuration.

We then restrict the strain around the relaxed configura-
tion to be symmetric by projecting H9 from the full (9 3
9) strain space to the smaller (6 3 6) strain space in Voigt
notation, which leads to the (6 1 3N) 3 (6 1 3N) matrix H0.

Next we find out which directions in configuration space
which has the (6 3 6) identity I6 and the masses Mi on thehave been sampled by examining the update H0update 5
diagonal. With the definitions given by Eqs. (13), (14), andH0 2 H00, where H00 is obtained from H0 the same way as
(15), the Hessian matrix Ā in the reduced coordinates isH0 from H. The update H0update has accumulated the step

directions by means of the updating formula Eq. (9), and
a singular value decomposition (SVD) of H0update 5 U ?
w ? V T (see [12]) yields a set of m orthonormal basis vectors Ā 5 1 Ā(«) Ā(«,s)

(Ā(«,s))T Ā(s) 25 (YTe1/2H0e1/2Y)21, (16)
of length (6 1 3N) spanning the sampled subspace. We
collect the basis vectors from the columns of U for which
the corresponding diagonal elements of w are nonzero [12],
into the columns of the (6 1 3N) 3 m matrix Y. Assuming and the change to the enthalpy dH around the relaxed

configuration (cf. Eq. (6)) can be written asthat all directions in configuration space permitted by the
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sufficient to just use Ā(«), because the internal coordinates
dH 5

1
2 SO

m
«

i51
Om«

j51
ziĀ

(«)
i j z j 1 2 Om«

k51
Oms

l51
zkĀ(«,s)

kl jl

(17)
must be relaxed as the unit cell is deformed. The matrix
B̄ defined as

1 Oms

p51
Oms

q51
j pĀ(s)

pqjqD.
B̄mn 5 Ā(«)

mn 2 (Ā(«,s)Ā(s)21Ā(«,s)T)mn (21)

is the projection of Bijkl into the subspace of symmetry-Equation (17) gives the change in enthalpy if the internal
preserving, symmetric strains «( j), j 5 1, ..., m«:coordinates, the unit cell shape, or both together are varied

along the reduced coordinates. This information is con-
tained in the matrices Ā(s), Ā(«), and Ā(«,s), respectively. V«(m)

ij Bijkl«
(n)
kl 5 B̄mn . (22)

3.1. Optical Phonon Modes
If m« is smaller than six, the knowledge of B̄ in Eq. (21)

It is straightforward to extract the normal modes and does not allow one to recover all elastic stiffness coeffi-
frequencies of the symmetry-preserving optical phonons cients Bijkl . However, the bulk modulus
at G from Ā(s). With a fixed unit cell shape, the enthalpy
can be expressed in terms of the displacement vectors ui ,

B0 5 FV Om«

m,n51
Tr(«(m))(B̄21)mnTr(«(n))G21

(23)i 5 1, ..., N, of the N atoms

dH 5
1
2 ON

i, j51
uiF

(ij)uj , (18) can always be computed, since the cell volume V is a free
parameter and guarantees m« . 0.

where F(ij) is the 3 3 3 matrix of force constants of second
4. NUMERICAL TESTSorder [17] between atoms i and j. Its relation to the matrix

Ā(s) is We show the efficiency of our method for three different
silicon systems, treated within density functional theory
(DFT) in the local density approximation (LDA) [19]. AĀ(s)

mn 5 ON
i, j51

(hs(m)
i )T F(ij)

(MiMj)1/2 (hs(n)
j ). (19)

norm-conserving pseudopotential [20] and a plane-wave
basis set expansion up to an energy cutoff of 24 Rydbergs

Thus Ā(s) is the projection of the dynamical matrix at G are used. Silicon is chosen because it is computationally
into the subspace of symmetry-preserving displacement simple, and because DFT in LDA is known to reproduce
patterns. the experimentally observed structural parameters accu-

To find the phonon modes and the frequencies, one rately [21, 22]. For the line minimization, we use the pre-
substitutes (13) into the equations of motion for the pho- scription outlined in Section 2.
nons and arrives at the generalized eigenvalue problem

4.1. Bulk Modulus and Phonon Frequencies
(20)(g2S 2 Ā(s))j 5 0, The accuracy of our formulae for the bulk modulus Eq.

(23) and the phonon frequencies Eq. (20) are tested by
where Smn 5 oN

i51(hs(m)
i )T(hs(n)

i ) is a symmetric overlap ma- stretching the silicon bond in the two-atom cell of the
trix between the basis vectors. The angular frequencies g diamond lattice along the (111) direction by 14% or 0.34
and the vectors j that solve Eq. (20) contain all the accessi- a.u. (1 a.u. 5 0.52918 3 10210m). This structure has three
ble information about the phonon modes. To get the dis- degrees of freedom: the angle between the lattice vectors,
placement patterns of the phonon modes in Cartesian coor- the bond length between the two atoms in the unit cell,
dinates, we substitute the vector j into Eq. (13). and the cell volume. While for the starting configuration

the angle is left at 608, we decrease the volume per atom
3.2. Elastic Stiffness Coefficients

from 131 to 120 a.u.3, and initialize H according to Eq.
(10), assuming a bulk modulus of 500 GPa and an averageA fully builtup H-matrix allows the computation of some

linear combinations of the elastic stiffness coefficients Bijkl phonon frequency of 8 THz. A Brillouin zone integration
grid [23] of 8 3 8 3 8 is used, and no external pressurefor finite pressure [18] from Eq. (17). The Bijkl’s describe

how the enthalpy changes upon lattice distortions around is applied.
It takes 14 force/stress computations to reduce the stressthe equilibrium configuration, assuming that the lattice

distortion is accompanied by a relaxation of the internal and the forces to less than 1023 GPa and 4 3 1025 eV/a.u.,
respectively, thereby recovering the diamond structure.parameters. We will now relate Bijkl to Ā, which gives the

change of enthalpy along the reduced coordinates. It is not Using Eqs. (23) and (20), we compute the bulk modulus
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to be 90 GPa and the optical phonon frequency at G to be
15 THz. This is close to the 96 GPa and 15.4 THz obtained
from the Murnaghan equation of state [24] and a tradi-
tional frozen-phonon calculation. We cannot expect per-
fect agreement because of the imperfect line minimization
and the anharmonicity of the enthalpy surface at the start-
ing point. However, the accuracy is good enough to yield
a reasonable estimate and provide insight into material
properties. For example, when searching for hard materials
[25], promising candidate structures can already be identi-
fied from the relaxation at ambient pressure, without going
through the expensive computation of the equation of
state.

4.2. Relaxation of a 16-Atom Silicon Supercell

To assess the performance of the quasi-Newton algo-
rithm for a larger system, we apply it to a 16-atom supercell
of silicon in the diamond structure, where the atoms are
randomly displaced from the equilibrium positions with an
amplitude of 0.05 a.u. in all three spatial directions. After
displacing the atoms, the tips of the lattice vectors are
distorted randomly with an amplitude of 5%. Finally, the
volume is increased from 131.8 to 143.75 a.u.3 per atom.
The resulting crystal has only primitive translations as sym-

FIG. 1. Relaxation of the 16-atom silicon supercell. The atoms andmetry operations, resulting in 16 3 3 2 3 1 6 5 51 degrees
the unit cell vectors have been randomly displaced from the perfect

of freedom to be optimized. Brillouin zone integrations diamond structure, resulting in a system with 51 degrees of freedom. The
are performed on a 2 3 2 3 2 grid [23]. No external average force, the ‘‘stress’’ (oijs

2
ij)1/2 and the error in the enthalpy dH

are shown as a function of the number of force/stress computations. Eachpressure is applied. We initialize the H-matrix according
symbol represents a relaxation step, and most of the time it needs twoto Eq. (10) with an estimated bulk modulus of 150 GPa
force/stress computations to perform a relaxation step because of theand an average optical phonon frequency of 20 THz. Those
line minimization.

differ intentionally from the 96 GPa and 15.4 THz of Sec-
tion 4.1 in order to simulate realistic conditions, where the
bulk modulus and the phonon frequencies are not known

lattice vectors, this structure has six degrees of freedom.
at the beginning of the calculation.

It is thus a good example to show the performance of our
Figure 1 shows how the average force, the ‘‘stress’’

method, because there are enough degrees of freedom to
(oijs

2
ij)1/2, and the error in the enthalpy dH decrease as

make a direct minimization impractical, and it is required
the relaxation proceeds. Since there are 51 degrees of free-

that the symmetry of the crystal is preserved during the
dom, it will take at least 51 relaxation steps to build up H

relaxation process. We use this test case also to demon-
completely. Thus in most cases, it takes two force/stress

strate the benefits of a good starting guess for H.
computations per relaxation step to perform the approxi-

We relax the R8 phase at several different pressures p,
mate line minimization. For the last three relaxation steps,

starting with p 5 8.2 GPa, for which the experimentally
and also the following three steps not shown on the graph,

observed parameters [26] are V 5 902 a.u.3, a 5 110.070,
an approximate line minimization is not necessary, indicat-

u 5 0.2922, x 5 0.4597, y 5 20.0353, and z 5 0.2641. A
ing that H has improved.

6 3 6 3 6 grid [23] is used for the Brillouin zone integra-
tions. The H-matrix is initialized assuming a bulk modulus

4.3. Relaxation of the R8 Phase of Silicon
of 100 GPa, and optical phonon frequencies of 15 THz. It
takes 10 relaxation steps with a total of 16 force/stressThe R8 phase of silicon under pressure has been ob-

served experimentally [10] and has been studied with ab- computations to reduce the forces to less than 1024 eV/
a.u. and to converge the components of the stress tensorinitio calculations [26]. Its space group is R3· with eight

atoms in the rhombohedral unit cell. Two of the atoms are to better than 1023 GPa. At the relaxed position, for p 5
8.2 GPa, we find the computed structural parameters tolocated at the Wyckoff positions 2(c) (u, u, u), the other

six are on the 6(f) (x, y, z) sites [10]. Including the unit be V 5 861 a.u.3, a 5 109.990, u 5 0.280, x 5 0.462, y 5
20.034, and z 5 0.269.cell volume V and the angle a between the rhombohedral
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with pressure, and carrying over H from a relaxation at a
similar pressure cuts down the computational effort by
half. Not only does a better H-matrix result in more effi-
cient step directions, it also saves the line minimization,
because the trial step of length l 5 1 in Eq. (7) is already
sufficiently close to the minimum. With the superior start-
ing guess for H, we find convergence after eight or fewer
force/stress computations.

An analysis of H for p 5 0, gives a bulk modulus of 95
GPa for the R8 structure, compared to 89 GPa from the
Murnaghan equation of state [24]. Using Eq. (20), the
frequencies for the symmetry-preserving Ag phonon modes
at the Brillouin zone center are 4.0, 9.7, 10.7, and 14.1 THz.

5. SUMMARY

We propose an efficient quasi-Newton algorithm to si-
multaneously relax the internal coordinates and lattice pa-
rameters of a crystal while preserving its symmetry. As a
by-product, elastic properties and some of the optical pho-
non modes can be estimated. We have demonstrated the
efficiency of our method for silicon in a 16-atom diamond
supercell and the R8 phase.

FIG. 2. Relaxation of the R8 phase of silicon, which has a total of
six degrees of freedom. One of them—the unit cell volume—is shown

APPENDIX: SYMMETRY CONSERVATIONas a function of the number of force/stress computations for relaxations
at different pressure. Starting from the relaxed structural parameters

In this secton, we show that a relaxation with the BFGSobtained at 8.2 GPa, relaxations at 0 GPa and 16 GPa are performed.
In the same way, relaxations from 0 GPa to 28 GPa, and from 16 GPa scheme as outlined in Section 2 indeed preserves the sym-
to 24 GPa are carried out. The triangles show how the volume develops metry of the crystal if H is properly initialized (10).
if H is initialized with B0 5 100 GPa and gO/(2f) 5 15 THz. The relaxation Let us first examine how a symmetry-compliant point
is about twice as efficient if the H matrix of the starting point is used

X in configuration space must transform under a crystal(squares). Each symbol represents a relaxation step, but with the inferior
symmetry operation hautj, a being a unitary mirror-rotationinitialization of H (triangles), it often takes several force/stress computa-

tions per relaxation step, because the approximate line minimization has matrix, and t a nonprimitive translation vector. The first
to be performed. This is especially the case during the first few relaxation nine components of X are just the strain components «,
steps, when H is not built up yet. which have to remain invariant under the point symme-

try operations:

Starting with the computed parameters at 8.2 GPa, we
(24)«9 5 a21«a 5 «increase the pressure to 16 GPa, and then to 24 GPa,

relaxing after each increase in pressure. Analogously, we
decrease the pressure from 8.2 GPa to 0 GPa, and from if the symmetry should be preserved. The other compo-
there to 28 GPa. Figure 2 shows how the cell volume nents of X are the positions si of the atoms in lattice coordi-
changes during the relaxation processes. We perform the nates, and they transform according to
calculations with two different initializations of H: one
intialized according to Eq. (10) with B0 5 100 GPa, ḡO/ (25)s9i 5 (h21ah) si 1 h21t.
(2f) 5 15 THz (shown as triangles), and the other one
(squares) taken from the fully builtup H of the previous

Since the symmetry operation hautj leaves the crystal in-pressure. For example to compute the square-marked
variant, it is always possible to find the permutation matrixcurve from 8.2 GPa to 0 GPa, the final H obtained from
Pij which gives the index of the atom j into which atom ithe relaxation at 8.2 GPa is used. The convergence criterion
has been mapped:is such that the forces are smaller than 1024 eV/a.u., and

the stress is accurate to better than 1023 GPa.
Figure 2 shows the advantage of a superior initialization s9i 5 O

j
Pijsj . (26)

of H. Obviously, the H-matrix does not change too much
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